STRATEGOS

Continuous & Discrete M&S

DIME University of Genoa
via Opera Pia 15
16145 Genova, Italy
www.itim.unige.it

Agostino G. BRUZZONE
agostino@itim.unige.it

Roberto Cianci
cianci@dime.unige.it
Modeling and Simulation: Basics & Classification
Why Modeling & Simulation?

Internal Complexity → Complex Behaviors

Simulation:
More Efforts
More Capabilities
Reusable Model

Not Linear Systems
Not valid Simplification Hypotheses
Boundary Conditions are Critical
No Generalization

External Complexity → Many Interaction
Simulation Origins

Defense
- Engineering
- Training

Decision Support
- Interoperability
- Simulation based Acquisition

Industry
- Manufacturing
- Process Optimization
- Operations Management
- Decision Support

now

'50

Simulation Team

www.simulationteam.com
Simulation Origins

Defense

Engineering Training

Industry

Manufacturing Process Optimization Operations Management Decision Support

Decision Support Interoperability Simulation based Acquisition

‘50 now

Microsoft Flight Simulator™
Static M 346 CAE
5DoF F18 Aegis
6DoF Jaguar CAE
V22 Vertical Flight Simulator NASA Ames

Simulation Team

www.simulationteam.com

Copyright © 2000-2020 Agostino G. Bruzzone, Simulation Team

Unclassified-Unlimited: Approved for Public Release
Simulation Origin?

Simulator
Simulator Figurae

Ovid’s Metamorphoses, 11, 634, 8 AD
Major Questions

Simulation is able to answer to the following questions:

• What if ? *(directly)*
• How To ? *(indirectly)*
• Why ? *(indirectly)*
Simulation Types

- Interoperable
- Deterministic
 - Distributed
 - Stochastic
 - Parallel
 - Man-in-the-Loop
 - Sim. as a Service
 - HW-in-the-Loop

SIMULATION

- Discrete Event
- Real-Time
 - Continuous
 - Slow-Time
 - Combined
 - Quasi-Real Time
 - Hybrid
 - Fast-Time Reality
Classification Criteria for M&S in Military Applications:

- **Live Simulation**
 - A *Simulation where real people are operating real systems*

- **Virtual Simulation**
 - A simulation involving real people operating simulated systems (MIL)

- **Constructive Simulation**
 - A simulation involving Simulated people operating simulated systems
Simulation is the reproduction of the reality by using computer models. The Simulation allows to build up a Virtual Environment and to run dynamic scenarios in order to analyze or optimize the real system. A Serious Games allows to involve players in an learning experience through user Engagement.

HBM means Human Behavior Modeling and/or Human Behavior Modifiers that are used for simulating the human components.
What are M&S, SG & HBM?

Simulation is the reproduction of the reality by using computer models. The Simulation allows to build up a Virtual Environment and to run dynamic scenarios in order to analyze or optimize the real system. A Serious Games allows to involve players in an learning experience through user Engagement.

HBM means Human Behavior Modeling and/or Human Behavior Modifiers that are used for simulating the human components.
If we move from the technological and physical plan to operation and interaction the modeling, *Behavior* become crucial. In case of interest into modeling Bear Activities over the ice, it emerge the fundamental need to reproduce social interactions and emotions that affect their behaviors. In this case the fear of the Bear Cub, the Leadership of the Mother and their collective action should be model.
Specific Nature of Simulation Projects

- Simulation Projects are usually a support for Larger Initiatives
- Simulation Projects deadlines and requirements are often related to other on-going Projects
- Simulation Projects are different from SW Projects because needs to face strong VV&A versus real Systems
- Simulation Knowledge needs to be used for Model Development as strong background for Implementation phase
Life Cycle: How many Models?

GOAL: CONCEIVE, DESIGN, BUILD, TEST, TRAIN, AND OPERATE A NEW PRODUCT IN A COMPUTER BEFORE CUTTING METAL

The Virtual Product Life Cycle

- COST AND OPERATIONAL EFFECTIVENESS ANALYSIS
- LESSONS LEARNED
- OPERATIONAL & LOGISTICAL SIMULATIONS
- DEPLOYABLE SYSTEM
- TRAINING SIMULATIONS
- OPERATIONAL SYSTEM
- VIRTUAL TESTING
- PRODUCT
- VIRTUAL MANUFACTURING
- THE PRODUCT-MODEL BASED VIRTUAL PROTOTYPE
- SIM-BASED DESIGN CAR ENGINEERING
- REQUIREMENTS
- PRODUCT DEFINITION

DIPTEM
Università di Genova

Unclassified-Unlimited: Approved for Public Release

Copyright © 2000-2020 Agostino G. Bruzzone, Simulation Team
Just in Time on Simulator Deliverables

Simulation Result Value

Simulation Result Deadline for Perfect Timing

Latest Time for Use the Simulation Results
System Configuration Dynamics

System & Simulation Project Evolution

Risk to Work on a Model Different from the New Configuration/Scenario of the Real System
A model Output could be considered in relation to a credibility level. If correctness grows, development cost of the model grows; meanwhile usability of the model increases, but with a non-linear, and usually decreasing rate.
Object Oriented Simulation (OOS)

- An Object Oriented Simulation (OOS) models the behavior of interacting objects over the time.
- Object collections are called classes and can be used to create simulation models and simulation packages.
- The simulations built with these tools possess the benefits of an object-oriented design: encapsulation, inheritance, polymorphism, run-time binding, parameterized typing.
Interoperable Simulation for Extended Maritime framework

A first case for ISSEM Federation is devoted to protect an Off-Shore Platform by using AUV (Autonomous Underwater Vehicles) by adopting High Level Architecture Standard (HLA).

The simulation allows to model different Threats and assets.

Intelligent Agents Computer Generated Forces control the behavior of the entities.
Simulation Projects vs. Fedep

1. Define Federation Object
2. Perform Conceptual Analysis
3. Design Federation
4. Develop Federation
5. Plan, Integrate and Test Federation
6. Execute Federation & Prepare Output
7. Analyze Data and Evaluation Results

SOM: Simulation Object Model
FOM: Federation Object Model
FR: Federation Requirement
FED: Federation Execution Data
FDD: FOM Document Data
RTI.ID: Run time Infra Structure Interchange Data

- Modified/New Federates
- Implemented Federation Infrastructure
- RTI Initialization Data
- FOM
- FED/FDD
- Scenario Instances
- Supporting DBase

Final Report Lessons Learned Reusable Products
Development Time: Traditional

Simulation Project Kick Off
- Target Definition
- System Analysis
- Data Collection
- Conceptual Model Design
- Model Implementation

Target
- Old Situation
- Simulator Ready for Use
- Testing
Simulation Project Kick Off
Target Definition
System Analysis
Data Collection
Conceptual Model Design
Model Implementation
Testing
New Situation
Simulator Ready for Use
Development Time: Now

Target
Definition
System
Analysis
Conceptual Model
Design
Model Implementation
Data Collection
New Situation
Simulator Ready for Use
Development Time: Now
Open Issues in M&S Projects

Problem Playground

- Multidisciplinary Teams
- Distributed Teams
- Scenario Definition
- Skills & Experiences
- Legacy Dreaming
- Large Projects
- Ambitious Goals
- Complex RAM
- Development Bottlenecks
- Discovering the Real Models
Verification and Validation in M&S… and Accreditation

- One of the most difficult problems facing the simulation analyst is determining whether a simulation model is an accurate representation of the actual system being studied (i.e., whether the model is valid).
- If the simulation model is not valid, then any conclusions derived from it is of virtually no value.
- Validation and verification are two of the most important steps in any simulation project.
- Accreditation is the crucial part of obtaining from Users the confirmation of Simulation Utility.
What are Validation and Verification?

- Validation is the process of determining whether the conceptual model is an accurate representation of the actual system being analyzed. Validation deals with building the right model.
- Verification is the process of determining whether a simulation computer program works as intended (i.e., debugging the computer program). Verification deals with building the model right.
Verification and Validation is critical in M&S and require to be followed all along Simulation Development Process from Objective Definition to integration tests, experimentation and data analysis.
V&V for Complex Systems

- It is critical to understand, that due to the high not linear nature of most of simulation models it is not possible to apply superposition principle.
- Due to this reason it even more evident that even if all the sub models, objects or federates are able to pass VV&T (Validation, Verification and Testing) this fact don’t allows to conclude that the overall simulator is validated and verified.
- It is necessary to conduct tests and experiments and to complete specific VV&A (Verification Validation and Accreditation) even on the whole Federation to guarantee this results.
General Cost Drivers

Existing & Reusable
- VV&A Models
- Certified Database
- VV&A Documentation

Model Dimension
- Model Size
- Model Complexity
- Federation Complexity

Risk & Uncertainty
- New Development
- Interoperability
- Information Availability

M&S Costs
Cost Driver Overview

- Unavailable Data
 - Data without VV&A
 - Maintenance of Data
 - Data for Simulation

- Model Size
 - Level of Detail
 - Risk & Uncertainty
 - Complexity

- Confidence of VV&A
 - Simulation Confidence
 - System Exp. Error
 - Level of Confidence
 - VV&A Documentation

- Amount of Documents
 - Short Term Life Cycle
 - Long Term Life Cycle

Costs

- Available Expertise
 - Available Tools
 - Tailored Procedures

- Special Experiments
 - Benchmark Data
 - Numerical Generated
 - Data for Simulation Execution

- Application Experts
 - VV&A Experts
 - Effective Expertise
 - Subject Matter Experts

- VV&A Legacy
 - New Models
 - New Federation
 - M&S Categories
Terminology and Definitions (1)

- System and Model
- State Variables
- Entities
- Resources
- Attributes
- Activities and Delays
- State of a system
- Simulation Model
Terminology and Definitions (2)

• A **System** is a collection of mutually interacting objects (entities) that are affected by outside forces.
• A **Model** is a representation of an actual system. A model must be complex enough to achieve the objectives for which the model has been developed.
• The system **State Variables** are the collection of all information needed to define what is happening within a system to a sufficient level at a given point in time.
• An **Entity** represents an object that requires explicit definition; dynamic entities and static entities (Resources).
Terminology and Definitions (3)

- The descriptors of an entity are called its Attributes.
- An Activity is a period of time whose duration may be known prior to commencement of the activities (duration can be constant, random value, result of an equation, etc.).
- A Delay is an indefinite duration caused by some combination of systems conditions.
- The state of a system is defined in terms of the numeric values assigned to the attributes of the entities.
- The Simulation Model is the representation of the dynamic behavior of the system by moving it from state to state in accordance with well-defined operating rules (Pritsker, 1986).
Variable Vs. Invariable Attributes

- **Attributes** are descriptors of entities. The value of an attribute can vary over time (variable attribute) or not (invariable attribute). Normally, we are more concerned with modeling the variable attributes.

- Examples of variable attributes are:
 1. The number of assemblies in a queue.
 2. The status of a machine (which leads to the determination of utilization).
 3. The finish time of an assembly.
 4. Whether or not the doctor is busy.

- Examples of invariable attributes are:
 1. The routing for a part.
 2. The sequence of procedures to be performed on a hospital patient with a particular set of symptoms.
Purposes of Simulation Modeling

- Simulations allow inferences to be drawn about systems without building them or disturbing them.

- Simulation can be used for
 - design
 - operational analysis
 - performance assessment
 - education & training
Deterministic and Stochastic Simulation

Classification on the base of the Model Nature:

Deterministic Simulation
A Simulation based on models where statistical distribution are not in use, including just deterministic behaviors

Stochastic Simulation
A Simulation reproducing a system with variables regulated by not known statistical phenomena by implementing pseudorandom variables
Time Speed in Different Simulation

Classification on the base of Simulation Speeds:

• **Real Time Simulation**
 A Simulation where time evolves at same speed of a real clock

• **Fast Time Simulation**
 A Simulation able to evolves faster than the real system under analysis

• **Slow Time Simulation**
 A Simulation unable to evolve at same speed of real system under analysis
Classification Criteria for M&S in Military Applications

Discrete (dependent variables change discretely)

- Parts in queue

Continuous (dependent variables change continuously)

- Parts in queue

Time
Simulation Taxonomy

Continuous time simulation
- State changes occur continuously across time
- Typically, behavior described by differential equations

Discrete time simulation
- State changes only occur at discrete time instants
- **Time stepped**: time advances by fixed time increments
- **Event stepped**: time advances occur with irregular increments

Computer simulation
- Discrete models
 - Event driven
- Continuous models
 - Time-stepped
Time Stepped vs. Event Stepped

Goal: compute state of system over simulation time

Time Stepped Execution

Event Driven Execution
Time Stepped Execution (Paced)

While \(\text{simulation not completed} \)
{
 \text{Wait Until} (W2S(\text{wallclock time}) \geq \text{current simulation time})

 \text{Compute state of simulation at end of this time step}

 \text{Advance simulation time to next time step}
}\}
Combined Discrete-Continuous Models (Hybrid)

The behavior of the model is simulated by computing the values of the state variables at small time steps and by computing the values of attributes and global variables at event times.

- Discrete change made to a continuous variable (i.e. vehicle efficiency after maintenance operations)
- A threshold value for a continuous variable may induce a new event (i.e. starting of vehicle maintenance operations after a certain time)
- Change in the analytical relationships between continuous variables at discrete time instants (i.e. change in the equation governing the acceleration of a vehicle when human being is in the vicinity of the vehicle)
Different Time Concepts

- **physical system**: the actual or imagined system being modeled
- **simulation**: a system that emulates the behavior of a physical system

physical time: time in the physical system
- Noon, December 31, 2010 to noon January 1, 2011

simulation time: representation of physical time within the simulation
- floating point values in interval $[0.0, 24.0]$

wallclock time: time during the execution of the simulation, usually output from a hardware clock
- 9:00 to 9:15 AM on October 10, 2010
Simulation Time Concept

Simulation time is defined as a totally ordered set of values where each value represents an instant of time in the physical system being modeled.

For any two values of simulation time T_1 representing instant P_1, and T_2 representing P_2:

- Correct ordering of time instants
 - If $T_1 < T_2$, then P_1 occurs before P_2
 - 9.0 represents 9 PM, 10.5 represents 10:30 PM

- Correct representation of time durations
 - $T_2 - T_1 = k (P_2 - P_1)$ for some constant k
 - 1.0 in simulation time represents 1 hour of physical time
Paced vs. Unpaced Execution

Modes of execution

- **As-fast-as-possible** execution (unpaced): no fixed relationship necessarily exists between advances in simulation time and advances in wallclock time
- **Real-time** execution (paced): each advance in simulation time is paced to occur in synchrony with an equivalent advance in wallclock time
- **Scaled real-time** execution (paced): each advance in simulation time is paced to occur in synchrony with $S \times$ an equivalent advance in wallclock time (e.g., 2x wallclock time)

Simulation Time = $W2S(W) = T_0 + S \times (W - W_0)$

$W =$ wallclock time; $S =$ scale factor
$W_0 (T_0) =$ wallclock (simulation) time at start of simulation
(assume simulation and wallclock time use same time units)

Paced execution (e.g., immersive virtual environments) vs. unpaced execution (e.g., simulations to analyze systems)
Simulation and Integration with Other Advanced Techniques

- Artificial Intelligence (AI) & Intelligent Agents (IA)
 - Knowledge Based Systems
 - Artificial Neural Networks
 - Fuzzy Logic
 - Genetic Algorithms

- Advanced Techniques
 - Simulation
 - Chaos Theory
 - Metamodels & DOE
 - Optimization Techniques

This integration is sometime reported in literature as Hybrid Simulation
Integration as Additional Challenge

The square stone to success in the application of new methodologies is the integration of different techniques and on interoperability among multidisciplinary models.
Summary & Questions
M&S Technical and Scientific References
Scientific References

- Banks J. (1998) "Handbook of Simulation - Principles, Methodology, Advances, Applications and Practice" Danvers, MA01923
Scientific References

- Bruzzone A.G., (2017) ""Simulazione, Realtà Virtuale e Aumentata: non Parole, ma Risultati Concreti per gli Impianti di Industry 4.0”", Invited Speech at Industry 4.0: Safety 4.0, Como, Italy
- Bruzzone A.G., (2017) "“Simulation, IA & Mixed Reality within Industry 4.0”", Invited Speech at the 21st International Conference on Knowledge - Based and Intelligent Information & Engineering Systems, Marseille, France
- Bruzzone A.G., (2016) "Simulate or Perish! How Simulation is changing the Game in Industry", Keynote Speecher at DBSS, Delft, NL
Scientific References

Scientific References

• Bruzzone A.G., (2007) "Generated Forces in Interoperable Simulations devoted to Training, Planning and Operation Support", Keynote Speaker at EuroSIW2007, Santa Margherita Ligure, Italy, June
Scientific References

Scientific References

- Fu, M.C. (1994) "A tutorial review of techniques for Simulation Optimization", Wintersim 1994, La Jolla, CA
- OR/MS Today, August: 64-67
Scientific References

- Sokolowski J.A., Banks C.M. (2009) "Modeling and Simulation for Analyzing Global Events" Old Dominion University,Suffolk
- Sokolowski J.A., Banks C.M.(2009) “Principles of Modeling and Simulation” Old Dominion University,Suffolk Virginia
- Sokolowski J.A., Banks C.M. (2010) "Modeling and Simulation Fundamentals Theoretical Underpinnings and Practical Domains“ Old Dominion University,Suffolk
- Thesen, A., Thravis, L. (1992), Simulation for Decision Making, West, St Paul, MN.,
Interoperability References

- 1278.3-1996 (R2002) IEEE Recommended Practice for Distributed Interactive Simulation--Exercise Management and Feedback
- 1278.4-1997 (R2002) IEEE Trial-Use Recommended Practice for Distributed Interactive Simulation--Verification, Validation, and Accreditation
- 1516-2010 IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)--Framework and Rules
- 1516.3-2003 IEEE Recommended Practice for High Level Architecture (HLA) Federation Development and Execution Process (FEDEP)
- 1516.4-2007 IEEE Recommended Practice for VV&A
- 1516-2010 - IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)-- Framework and Rules

- Loftin B. A “Comparison of Military Synthetic Environments and Virtual Battlespaces”, I/ITSEC2003, VMASC
References

Agostino G. BRUZZONE
Director of M&S Net (34 Centers WorldWide)
Director of the McLeod Institute Genoa Center
President Simulation Team (26 Partners)
President of Liophant
Council Chair Int. MSc in Strategic Engineering
Director Int. Master MIPET

Full Professor in
DIME University of Genoa
via Opera Pia 15
16145 Genova, Italy

Email agostino@itim.unige.it
URL www.itim.unige.it

www.strategos.it